Backend Fingerprinting¶
Content-based fingerprinting using machine learning models.
Overview¶
Three complementary fingerprinting approaches:
- CLIP: Semantic content fingerprinting (768-dim)
- DINO: Structural fingerprinting (1024-dim)
- PDQ: Perceptual hash (256-bit)
CLIP Fingerprinting¶
OpenAI CLIP model for semantic content embedding.
Characteristics: - 768-dimensional embeddings - Semantic understanding of content - Good for content-based matching - Robust to minor edits
DINO Fingerprinting¶
Meta's DINO v2 for structural analysis.
Characteristics: - 1024-dimensional embeddings - Captures structural/layout information - Robust to significant transformations - Foundation model approach
PDQ Hash¶
Facebook's perceptual hash algorithm.
Characteristics: - 256-bit binary hash - Fast approximate matching - Robust to compression - Used for rapid filtering
Similarity Matching¶
FAISS index for efficient similarity search:
# Query embedding
query = extract_clip_fingerprint(image)
# Search similar images
distances, indices = faiss_index.search(query, k=10)
# Calculate similarity scores
similarities = 1 - (distances / 2)
Implementation¶
See Services Documentation for detailed code.